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Abstract
We investigate the ground state solutions of the Schrödinger equation for
complex (non-Hermitian) Hamiltonian systems in two dimensions within the
framework of an extended complex phase-space approach. The eigenvalues
and eigenfunctions of some two-dimensional complex potentials are found.

PACS number: 03.65.Ge

1. Introduction

In the last few years, very interesting investigations on the PT-symmetric quantum mechanics
generated a renewed interest in the analysis of complex potentials [1–5]. These studies
show that a complex (non-Hermitian) Hamiltonian can give real and bounded eigenvalues if
Hamiltonian is invariant under the simultaneous action of space (P) and time (T) reversal.
Therefore, now it is possible to investigate a number of new Hamiltonian systems imposing
the PT-symmetric condition [1].

Complex potentials is used to study a variety of phenomena in different fields of physics
and chemistry. For example, non-Hermitian Hamiltonians are used in the context of the optical
model of a nucleus, to study delocalization transitions in condensed matter systems such as
a vortex flux line depinning in type-II superconductors, to study population biology, in the
description of a Bose system of hard spheres, to study the energy spectra of complex Toda
lattice, quantum cosmology, quantum field theory, supersymmetric quantum mechanics etc
[1, 4].

Recently, Kaushal et al [5] used the extended complex phase-space approach [6] for
solving the Schrödinger equation (SE) for ground and excited states for a number of
complex systems in one dimension and discussed the issues related to normalization of the
eigenfunctions for non-Hermitian operators. However, their study is restricted to only one-
dimensional systems and demands its generalization in higher dimensions. Such extensions in
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higher dimensions are generally desirable and open new possibilities of studying some more
complicated systems. Recently, the extended phase-space approach has also been utilized for
tracing complex dynamical invariants (constants of motion) of a number of one-dimensional
classical systems [6, 7].

With this motivation, in the present study, we generalize the extended complex phase-
space approach in two dimensions with a view to solve the SE for a variety of two-
dimensional complex potentials. Although there are various ways of complexifying [6] a
given Hamiltonian, but here we use the scheme due to Xavier and de Aguir [8], used to
develop an algorithm for the computation of the semiclassical coherent state propagator, to
transform potentials on an extended complex phase space.

The organization of the paper is as follows. In section 2, we will develop the extended
complex phase-space approach in two dimensions, which enables one to compute eigenvalue
spectra of two-dimensional complex systems. In section 3, the eigenvalues and eigenfunctions
of some interesting two-dimensional complex systems will be investigated. Finally, concluding
remarks are given in section 4.

2. The method

For a two-dimensional complex system described by H(x, y, px, py), we define the following
transformations for the position and momenta variables:

x = x1 + ip3, y = x2 + ip4,

px = p1 + ix3, py = p2 + ix4.
(1)

The presence of variables (x3, x4, p3, p4) in the above transformations may be regarded
as some sort of coordinate–momentum interactions of the dynamical system. Also for
the dimensional consideration there appears a constant d in equation (1) in the form
x = x1 + idp3, px = p1 + id−1x3, etc. In the present work, however, we shall choose
d = 1 for simplicity. Note that in this complexifying scheme the degrees of freedom of the
underlying system just become double and (x1, p1), (x2, p2), (x3, p3) and (x4, p4) turn to be
canonical pairs.

Similar transformations to equation (1) have also been used in the study of nonlinear
evolution equations in the context of amplitude-modulated nonlinear Langmuir waves in
plasma [9].

Now, consider the SE (for h̄ = m = 1) for two-dimensional systems

Ĥ (x, y, px, py)ψ(x, y) = Eψ(x, y), (2)

where

Ĥ (x, y, px, py) = −1

2

(
d2

dx2
+

d2

dy2

)
+ V (x, y). (3)

Here we only present time-independent stationary state solutions of equation (2) for the sake
of convenience. For this purpose, using transformation equation (1), we derive

d

dx
= 1

2

(
∂

∂x1
− i

∂

∂p3

)
,

d

dy
= 1

2

(
∂

∂x2
− i

∂

∂p4

)
,

d

dpx

= 1

2

(
∂

∂p1
− i

∂

∂x3

)
,

d

dpy

= 1

2

(
∂

∂p2
− i

∂

∂x4

)
.

(4)

Note that the momentum operators px = −ih̄ d
dx

and py = −ih̄ d
dy

of the conventional quantum

mechanics under the transformation (1) reduce to the forms p1 + ix3 = −i
2

(
∂

∂x1
− i ∂

∂p3

)
and
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p2 + ix4 = −i
2

(
∂

∂x2
− i ∂

∂p4

)
. These relations give p1 = −1

2
∂

∂p3
, x3 = −1

2
∂

∂x1
, p2 = −1

2
∂

∂p4

and x4 = −1
2

∂
∂x2

. Thus, these results lead to the commutation relations namely, [x1, x3] =
[p3, p1] = [x2, x4] = [p4, p2] = 1, [xi, pj ] = 0, where i, j = 1, 2, 3, 4.

Also the complex coordinate transformation (1) preserves the fundamental commutation
relations, [x, px] = [y, py] = i, which can easily be verified using equations (1) and (4).

Now consider V (x, y), ψ(x, y) and E as complex quantities

V (x, y) = Vr(x1, p3, x2, p4) + iVi(x1, p3, x2, p4),

ψ(x, y) = ψr(x1, p3, x2, p4) + iψi(x1, p3, x2, p4), E = Er + iEi,

where subscripts r and i denote the real and imaginary parts of the corresponding quantities
and other subscripts to these quantities separated by comma will denote the partial derivatives
of the quantity concerned.

Thus, using equation (4) in equation (3) and using above equations, the SE,
equation (2), after separating real and imaginary parts, reduces to a pair of coupled partial
differential equations as

− 1
8

(
ψr,x1x1 − ψr,p3p3 + 2ψi,x1p3 + ψr,x2x2 − ψr,p4p4 + 2ψi,x2p4

)
+ Vrψr − Viψi = Erψr − Eiψi, (5a)

− 1
8

(
ψi,x1x1 − ψi,p3p3 − 2ψr,x1p3 + ψi,x2x2 − ψi,p4p4 − 2ψr,x2p4

)
+ Vrψi + Viψr = Erψi + Eiψr . (5b)

The Cauchy–Riemann analyticity conditions for ψ(x, y) are given by

ψr,x1 = ψi,p3; ψr,p3 = −ψi,x1 ,

ψr,x2 = ψi,p4; ψr,p4 = −ψi,x2 .
(6)

Hence, in view of equation (6), we obtain somewhat simpler forms of equations (5a) and (5b)
that are written as

− 1
2

(
ψr,x1x1 + ψr,x2x2

)
+ Vrψr − Viψi = Erψr − Eiψi, (7a)

− 1
2

(
ψi,x1x1 + ψi,x2x2

)
+ Vrψi + Viψr = Erψi + Eiψr . (7b)

Note that equations (7a) and (7b) can be solved for Er and Ei for a given potential V (x, y)

and their explicit forms are given as

Er = − 1

2
(
ψ2

r + ψ2
i

) [
ψr

(
ψr,x1x1 + ψr,x2x2

)
+ ψi

(
ψi,x1x1 + ψi,x2x2

)]
+ Vr, (8a)

Ei = − 1

2ψ2
r + ψ2

i

[
ψr

(
ψi,x1x1 + ψi,x2x2

) − ψi

(
ψr,x1x1 + ψr,x2x2

)]
+ Vi. (8b)

Thus, in order to find solutions of equations (7a) and (7b) (also of equations (8a) and (8b)),
we make an ansatz for the eigenfunction ψ(x, y) as

ψ(x1, p3, x2, p4) = ψr + iψi = exp[g(x, y)] = exp[gr(x, y) + igi(x, y)]. (9)

The above equation can also be written as

ψr(x1, p3, x2, p4) = egr cos[gi(x1, p3, x2, p4)], (10a)

ψi(x1, p3, x2, p4) = egr sin[gi(x1, p3, x2, p4)]. (10b)
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Therefore, the analyticity condition, equation (6), for the functions gr and gi becomes

gr,x1 = gi,p3; gi,x1 = −gr,p3 ,

gr,x2 = gi,p4; gi,x2 = −gr,p4 .
(11)

Thus, equations (7a) and (7b), after using the forms of ψr and ψi from equations (10a) and
(10b), become

gr,x1x1 + gr,x2x2 +
(
gr,x1

)2
+

(
gr,x2

)2 − (
gi,x1

)2 − (
gi,x2

)2
+ 2(Er − Vr) = 0, (12a)

gi,x1x1 + gi,x2x2 + 2gr,x1gi,x1 + 2gr,x2gi,x2 + 2(Ei − Vi) = 0. (12b)

Equations (12a) and (12b) are now can be rationalized in order to obtain eigenvalue and
eigenfunction for a given form of potential. In what follows, we will use the derivations made
in the above section to solve SE, equation (2), for a number of two-dimensional complex
potentials.

3. Examples

In this section, we consider four two-dimensional complex potentials and solve SE for these
cases.

Case 1. First consider a two-dimensional complex potential of the type

V (x, y) = ax + by + cx2 + dy2 + exy, (13)

where the parameters a, b, c, d and e are complex constants.
The real and imaginary parts of the potential, equation (13), using transformation

equation (1), are written as

Vr = arx1 − aip3 + brx2 − bip4 + cr

(
x2

1 − p2
3

) − 2cix1p3 + dr

(
x2

2 − p2
4

)
− 2dix2p4 + er(x1x2 − p3p4) − ei(x1p4 + x2p3), (14a)

Vi = aix1 + arp3 + bix2 + brp4 + ci

(
x2

1 − p2
3

)
+ 2crx1p3 + di

(
x2

2 − p2
4

)
+ 2drx2p4 + ei(x1x2 − p3p4) + er(x1p4 + x2p3). (14b)

The ansatz for gr and gi for the underlying system, which conform equation (11), is considered
as

gr = δ1x1 − δ2p3 + δ3x2 − δ4p4 + 1
2α1

(
x2

1 − p2
3

)
+ 1

2α2
(
x2

2 − p2
4

)
+ β1x1p3 + β2x2p4 + γ1(x1x2 − p3p4) − γ2(x1p4 + x2p3), (15a)

gi = δ2x1 + δ1p3 + δ4x2 + δ3p4 − 1
2β1

(
x2

1 − p2
3

) − 1
2β2

(
x2

2 − p2
4

)
+ α1x1p3 + α2x2p4 + γ2(x1x2 − p3p4) + γ1(x1p4 + x2p3). (15b)

Therefore, using equations (15a) and (15b) in equations (12a) and (12b) and equating the
coefficients of x1, x2, p3, p4 and their various products to zero, we obtain a set of non-repeating
equations as

Er = − 1
2

(
δ2

1 − δ2
2 + δ2

3 − δ2
4 + α1 + α2

)
, (16a)

γ 2
1 − γ 2

2 + α2
1 − β2

1 = 2cr , (16b)

γ1γ2 − α1β1 = ci, (16c)

γ 2
1 − γ 2

2 + α2
2 − β2

2 = 2dr, (16d)



The solution of the Schrödinger equation for complex Hamiltonian systems 10175

γ1γ2 − α2β2 = di, (16e)

γ1(α1 + α2) + γ2(β1 + β2) = er , (16f )

γ2(α1 + α2) − γ1(β1 + β2) = ei, (16g)

δ1α1 + δ2β1 + δ3γ1 − δ4γ2 = ar, (16h)

−δ1β1 + δ2α1 + δ3γ2 + δ4γ1 = ai, (16i)

δ1γ1 − δ2γ2 + δ3α2 + δ4β2 = br, (16j )

δ1γ2 + δ2γ1 − δ3β2 + δ4α2 = bi, (16k)

Ei = − 1
2 (2δ1δ2 + 2δ3δ4 − β1 − β2). (16l)

In order to find eigenvalues and the corresponding eigenfunction for the system, one should
find the solutions of equations (16b)–(16k).

As such the solutions of various parameters α’s, β’s, γ ’s, δ’s in the above equations are
seem to be difficult. Therefore, in order to seek solutions of these parameters, in terms of
the potential coupling parameters (i.e. a, b, c, d, etc), one can make more than one choices
among α’s, β’s, γ ’s, δ’s and can obtain mathematically correct results for Er,Ei and ψ for
a given potential. However, if such general solutions are reduced for some known systems
(say, simple harmonic oscillator), these may not provide the well-established results of such
systems. Therefore one should make some plausible choices among α’s, β’s, γ ’s, δ’s while
solving equations (16b)–(16k) in order to avoid any conflict between the general solutions and
the well-established results.

Hence keeping such possibilities in mind, we choose γ1 = γ2 and γ1γ2 = −α1β1. Thus,
for these choices, equations (16b)–(16e) immediately lead to

α1 = −c+, (17a)

β1 = c−, (17b)

α2 = −d+, (17c)

β2 = d−, (17d)

where c+ =
√

cr +
√

c2
r + c2

i

/
4, c− =

√
−cr +

√
c2
r + c2

i

/
4, d+ =

√
dr +

√
d2

r + d2
i

/
4 − cidi,

and d− =
√

−dr +
√

d2
r + d2

i

/
4 − cidi are used.

Further, equations (16f ) and (16g) give two constraining relations on the choices of the
potential coupling parameters a, b, c, etc and given as

√
ci/2(c− + d− − c+ − d+) − er = 0, (18a)√
ci/2(c− + d− + c+ + d+) + ei = 0. (18b)

Now in order to obtain the solutions for δi, i = 1, 2, 3, 4, we choose, for simplicity, δ1 = −δ3

and δ2 = −δ4 and utilizing equations (16h) and (16i) we get

δ3 = −δ1 = [ar(
√

ci/2 + c+) + ai(
√

ci/2 + c−)]/c1, (19a)

δ2 = −δ4 = [ai(
√

ci/2 + c+) − ar(
√

ci/2 + c−)]/c1, (19b)

where c1 =
√

4c2
r + c2

i + ci + (c− + c+)
√

2ci .
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Again, equations (16j ) and (16k) provide the following constraining relations:

brc1 − (
√

ci/2 + d−)[ai(
√

ci/2 + c+) − ar(
√

ci/2 + c−)]

+ (
√

ci/2 + d+)[ar(
√

ci/2 + c+) + ai(
√

ci/2 + c−)] = 0, (20)

bic1 + (
√

ci/2 + d−)[ar(
√

ci/2 + c+) + ai(
√

ci/2 + c−)]

+ (
√

ci/2 + d+)[ai(
√

ci/2 + c+) − ar(
√

ci/2 + c−)] = 0. (21)

Thus, after substituting the solutions of αi, βi, i = 1, 2, and δj , j = 1, 2, 3, 4 from
equations (17a)–(17d) and (19a), (19b) in equations (16a) and (16l), we find the real and
imaginary components of eigenvalue as

Er = (c+ + d+)/2 +
[(

a2
i − a2

r

)
(2cr + (c+ − c−)

√
2ci)

− 2aiar(2ci + (c− + c+)
√

2ci)
]/

c2
1, (22a)

Ei = (c− + d−)/2 +
[−4aiar(cr + (c+ − c−)

√
ci/2)

+ 2
(
a2

r − a2
i

)
(ci + (c+ + c−)

√
ci/2)

]/
c2

1. (22b)

Finally, the eigenfunction is given by

ψ = exp([(1 − i)
√

ci/2 + c+ − ic−](ar + iai)(x2 − x1 + i(p4 − p3))/c1

− (c+ + ic−)(x1 + ip3)
2/2 − (d+ + id−)(x2 + ip4)

2/2

+
√

ci/2(1 + i)(x1 + ip3)(x2 + ip4)). (23)

Here we wish to mention that the ground state energy and the corresponding eigenfunction of
a real two-dimensional harmonic oscillator can easily be obtained by choosing a = b = e =
ci = di = 0 and cr = dr , in the potential, equations (13). Hence from equations (22a)–(23),
we find the expressions for the eigenvalue and eigenfunction as Er = √

2cr , Ei = 0, and
ψ = exp(−√

cr/2(x2 + y2)), which are identical to the results obtained by other methods.
Further, on setting ar = br = ci = di = ei = 0 in equation (13), we obtain the PT-

symmetric form of the potential, whose eigenvalue spectra can be obtained using the same
ansatz for gr and gi as in the present case.

Case 2. Now we consider a two-dimensional harmonic plus inverse harmonic-type potential
as

V (x, y) = ax2 + by2 + cxy +
d

x2
+

e

y2
, (24)

where the parameters a, b, c, d and e are again chosen complex constants. Now using
equation (1) in equation (24), we obtain

Vr = ar

(
x2

1 − p2
3

) − 2aix1p3 + br

(
x2

2 − p2
4

)− 2bix2p4 + cr(x1x2 − p3p4)− ci(x1p4 + x2p3)

+
dr

(
x2

1 − p2
3

)
+ 2dix1p3(

x2
1 + p2

3

)2 +
er

(
x2

2 − p2
4

)
+ 2eix2p4

)
(
x2

2 + p2
4

)2 , (25a)

Vi = ai

(
x2

1 − p2
3

)
+ 2arx1p3 + bi

(
x2

2 − p2
4

)
+ 2brx2p4 + ci(x1x2 − p3p4) + cr(x1p4 + x2p3)

+
di

(
x2

1 − p2
3

) − 2drx1p3(
x2

1 + p2
3

)2 +
ei

(
x2

2 − p2
4

) − 2erx2p4
)

(
x2

2 + p2
4

)2 , (25b)
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after separating real and imaginary parts. Here we make an ansatz for the eigenfunction for
this potential, which is consistent to condition (11), as

gr = α1

2

(
x2

1 − p2
3

)
+

α2

2

(
x2

2 − p2
4

)
+ β1x1p3 + β2x2p4 + γ1(x1x2 − p3p4) − γ2(x1p4 + x2p3)

+ δ1 tan−1 x1

p3
+ δ2 tan−1 x2

p4
− δ3

2
ln

(
x2

1 + p2
3

) − δ4

2
ln

(
x2

2 + p2
4

)
, (26a)

gi = −β1

2

(
x2

1 − p2
3

) − β2

2

(
x2

2 − p2
4

)
+ α1x1p3 + α2x2p4 + γ2(x1x2 −p3p4) + γ1(x1p4 + x2p3)

+ δ3 tan−1 x1

p3
+ δ4 tan−1 x2

p4
+

δ1

2
ln

(
x2

1 + p2
3

)
+

δ2

2
ln

(
x2

2 + p2
4

)
. (26b)

The rationalization of equations (12a) and (12b), after using equations (26a) and (26b),
produce a set of equations as

Er = − 1
2 (α1 + α2 + 2(δ1β1 + δ2β2 − δ3α1 − δ4α2)), (27a)

γ 2
1 − γ 2

2 + α2
1 − β2

1 = 2ar, (27b)

γ1γ2 − α1β1 = ai, (27c)

γ 2
1 − γ 2

2 + α2
2 − β2

2 = 2br, (27d)

γ1γ2 − α2β2 = bi, (27e)

γ1(α1 + α2) + γ2(β1 + β2) = cr , (27f )

γ2(α1 + α2) − γ1(β1 + β2) = ci, (27g)

−δ1 − 2δ1δ3 = 2di, (27h)

δ3 + δ2
3 − δ2

1 = 2dr, (27i)

−δ2 − 2δ2δ4 = 2ei, (27j )

δ4 + δ2
4 − δ2

2 = 2er , (27k)

δ1γ1 − δ3γ2 = 0, (27l)

δ1γ2 + δ3γ1 = 0, (27m)

δ2γ1 − δ4γ2 = 0, (27n)

δ2γ2 + δ4γ1 = 0, (27o)

Ei = 1
2 (β1 + β2 − 2(δ1α1 + δ2α2 + δ3β1 + δ4β2)). (27p)

Again to derive the solutions for various parameters in the above equations, we assume γ1 = γ2

and γ1γ2 = −α1β1. Thus from equations (27b)–(27e), we find

γ1 = γ2 =
√

ai

2
, (28a)

α1 = −a+, β1 = a−, (28b)

α2 = −b+, β2 = b−, (28c)

where a+ = (
ar +

(
a2

r + a2
i

4

) 1
2
) 1

2 , a− = (−ar +
(
a2

r + a2
i

4

) 1
2
) 1

2 , b+ = (
br +

(|b|2 − aibi + a2
i

4

) 1
2
) 1

2

and b− = (−br +
(|b|2 − aibi + a2

i

4

) 1
2
) 1

2 with |b| = (
b2

r + b2
i

) 1
2 .
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Equations (27f ) and (27g) provide two constraining relations among the potential
coupling parameters and written as

(a+ − a− + b+ − b−)
√

ai/2 + cr = 0, (29a)

(a+ + a− + b+ + b−)
√

ai/2 + ci = 0. (29b)

Further, using equations (27h)–(27k), we obtain the solutions for the remaining parameters
δi’s as

δ1 = ∓ 4di√
2 + 16dr ± 2

√
1 + 16(dr + 4|d|2)

, (30a)

δ2 = ∓ 4ei√
2 + 16er ± 2

√
1 + 16(er + 4|e|2)

, (30b)

δ3 = −1

2
± 1

4

√
2 + 16dr ± 2

√
1 + 16(dr + 4|d|2), (30c)

δ4 = −1

2
± 1

4

√
2 + 16er ± 2

√
1 + 16(er + 4|e|2). (30d)

Note that equations (27l)–(27o) give four more constraining relations.
Finally, the eigenvalues and the eigenfunction may be obtained from equations (27a) and

(27p), and equations (26a) and (26b) respectively, after substituting the values of α’s, β’s and
δ’s, as

Er = ± 4dia−√
2 + 16dr ± 2

√
1 + 16(dr + 4|d|2)

± 4eib−√
2 + 16er ± 2

√
1 + 16(er + 4|e|2)

− a+

(
−1

2
± 1

4

√
2 + 16dr ± 2

√
1 + 16(dr + 4|d|2)

)

− b+

(
−1

2
± 1

4

√
2 + 16er ± 2

√
1 + 16(er + 4|e|2)

)
− 1

2
(a+ + b+), (31a)

Ei = ± 4dia+√
2 + 16dr ± 2

√
1 + 16(dr + 4|d|2)

± 4eib+√
2 + 16er ± 2

√
1 + 16(er + 4|e|2)

+ a−

(
−1

2
± 1

4

√
2 + 16dr ± 2

√
1 + 16(dr + 4|d|2)

)

+ b−

(
−1

2
± 1

4

√
2 + 16er ± 2

√
1 + 16(er + 4|e|2)

)
+

1

2
(a− + b−), (31b)

and

ψ = (
x2

1 + p2
3

) i
2 (δ1+iδ2)

(
x2

2 + p2
4

) i
2 (δ2+iδ4) exp

[
−1

2
(a+ + ia−)(x1 + ip3)

2

− 1

2
(b+ + ib−)(x2 + ip4)

2 + (1 + i)
√

ai/2(x1 + ip3)(x2 + ip4)

+ (δ1 + iδ2) tan−1 x1

p3
+ (δ2 + iδ4) tan−1 x2

p4

]
. (32)
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Similarly one can also find the explicit forms of eigenvalues and eigenfunction of the PT-
symmetric version of the potential (24) using the same ansatz, equations (26a) and (26b).

Case 3. Here, we consider a potential of the type

V (x, y) = ax2 + by2 + cxy +
dx

y
+

ey

x
, (33)

with a, b, c, d and e as complex quantities. Integrability of some particular forms of this
potential has been studied in past [10]. For this potential, we assume gr and gi as

gr = α1

2

(
x2

1 − p2
3

)
+

α2

2

(
x2

2 − p2
4

)
+ β1x1p3 + β2x2p4 + η1(x1x2 − p3p4)

− η2(x1p4 + x2p3) + δ1 tan−1 x1

p3
+ δ2 tan−1 x2

p4

− 1

2
δ3 ln

(
x2

1 + p2
3

) − 1

2
δ4 ln

(
x2

2 + p2
4

)
, (34a)

gi = −β1

2

(
x2

1 − p2
3

) − β2

2

(
x2

2 − p2
4

)
+ α1x1p3 + α2x2p4 + η2(x1x2 − p3p4)

+ η1(x1p4 + x2p3) + δ3 tan−1 p3

x1
+ δ4 tan−1 p4

x2

+
1

2
δ1 ln

(
x2

1 + p2
3

)
+

1

2
δ2 ln

(
x2

2 + p2
4

)
. (34b)

Again we find a set of equations among the parameters of gr and gi , after using equations (34a)
and (34b) in equations (12a) and (12b) as

Er = − 1
2 (α1 + α2 + 2(δ1β1 + δ2β2 − δ3α1 − δ4α2)), (35a)

η1η2 − α1β1 = ai, (35b)

η2
1 − η2

2 + α2
1 − β2

1 = 2ar, (35c)

η1η2 − α2β2 = bi, (35d)

η2
1 − η2

2 + α2
2 − β2

2 = 2br, (35e)

η1(α1 + α2) + η2(β1 + β2) = cr , (35f )

η2(α1 + α2) − η1(β1 + β2) = ci, (35g)

η1δ4 + η2δ2 = −dr, (35h)

η1δ2 − η2δ4 = di, (35i)

η1δ3 + η2δ1 = −er , (35j )

η1δ1 − η2δ3 = ei, (35k)

δ3 + δ2
3 − δ2

1 = 0, (35l)

δ1(1 + 2δ3) = 0, (35m)

δ4 + δ2
4 − δ2

2 = 0, (35n)

δ2(1 + 2δ4) = 0, (35o)

Ei = 1
2 (β1 + β2 − 2(α1δ1 + α2δ2 + β1δ3 + β2δ4)). (35p)
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Again in order to find the solutions of the above equations, we choose η1 = η2 and
η1η2 = −α1β1. These choices immediately provide the solutions for α’s, β’s, η’s and
δ’s. Thus from equations (35b)–(35e) we obtain

η1 = η2 =
√

ai

2
, (36a)

α1 = −a+, β1 = a−, (36b)

α2 = −b+, β2 = b−, (36c)

where the definitions of a+, a−, b+ and b− are same as given in case 2. Also equations (35f )
and (35g) produce two constraining relations, which are same as given in equations (29a) and
(29b).

Similarly from equations (35h)–(35k), we get

δ1 = −er + ei√
2ai

δ2 = −dr + di√
2ai

, (37a)

δ3 = −er − ei√
2ai

δ4 = −dr − di√
2ai

. (37b)

Again one can derive four more constraining expressions by substituting δ’s from
equations (37a) and (37b) in equations (35l)–(35o).

Finally, the eigenvalues are given as

Er = 1
2 (a+ + b+) + [(a+ + a−)er + (a+ − a−)ei + (b+ + b−)dr + (b+ − b−)di]/

√
2ai, (38)

Ei = 1
2 (a− + b−) + [(a− − a+)er + (a+ + a−)ei + (b− − b+)dr + (b+ + b−)di]/

√
2ai, (39)

and the eigenfunction becomes

ψ = (
x2

1 + p2
3

) (er +iei )(1−i)√
8ai

(
x2

2 + p2
4

) (dr +idi )(1−i)√
8ai exp

[
−1

2
(a+ + ia−)(x1 + ip3)

2

− 1

2
(b+ + ib−)(x2 + ip4)

2 + (1 + i)
√

ai/2(x1 + ip3)(x2 + ip4)

− (er + iei)(1 − i)√
8ai

tan−1 x1

p3
− (dr + idi)(1 − i)√

8ai

tan−1 x2

p4

]
. (40)

Case 4. Finally, we consider the PT-symmetric version of the case three potential,
equation (33), which is obtained by setting ai = bi = ci = di = ei = 0 and is given
by

V (x, y) = arx
2 + bry

2 + crxy +
drx

y
+

ery

x
. (41)

Note that in this potential only real coupling parameters are present.
The eigenvalues and the eigenfunction for this case can be obtained using the same ansatz

for gr and gi used in case 3. As a result, equations (35b)–(35m) reduce to some simpler forms.
The solution of these equations may be obtained by choosing β1 = β2 = η2 = 0 and α1 = η1.
Hence the solutions are given as

α1 = η1 = −√
ar, α2 = −

√
2br − ar, (42a)
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δ1 = δ2 = 0, δ3 = cr√
ar

, δ4 = dr√
ar

, (42b)

with a restriction
√

ar +
√

2br − ar − cr/
√

ar = 0.
Finally, the eigenvalues and the eigenfunction turn out as

Er = 1

2
(
√

ar +
√

2br − ar − 2cr − 2dr

√
2br/ar − 1), Ei = 0, (43)

ψ = (
x2

1 + p2
3

) −cr
2
√

ar
(
x2

2 + p2
4

) −dr
2
√

ar exp

[
−1

2

√
ar(x1 + ip3)

2 − 1

2

√
2br − ar(x2 + ip4)

2

+
√

ar(x1 + ip3)(x2 + ip4) +
icr√
ar

tan−1 x1

p3
+

idr√
ar

tan−1 x2

p4

]
. (44)

Note that the imaginary part of the eigenvalue is zero, which is same as observed for one-
dimensional systems [5].

4. Conclusions

In the present work, we have tried to develop the extended phase-space approach [5], for two-
dimensional complex Hamiltonian systems. This extension can be utilized to study quantum
mechanics of some more realistic two-dimensional complex systems.

Although in our study of one- and two-dimensional complex systems using the present
approach, we observed that if the eigenvalue and eigenfunction of a complex system in one
dimension is known, then the eigenvalue spectra of an analogous two-dimensional system
can straightforwardly be obtained by inserting similar terms, as present in one dimension,
for the second coordinate, provided the same form of ansatz for the eigenfunction is
used. For example, for a one-dimensional harmonic oscillator system, H = ax2, with
complex a = ar + iai , the real and imaginary parts of eigenvalue are Er = √

ar + |a| and
Ei = √−ar + |a| and the eigenfunction is ψ(x1, p3) = exp

[−(a+|a|)(x1+ip3)
2

4
√

ar +|a|
]

[5] and for

its two-dimensional counterpart, H = ax2 + by2, a and b are complex, one can obtain
Er = √

ar + |a| +
√

br + |b|, Ei = √−ar + |a| +
√−br + |b| and ψ(x1, p3, x2, p4) =

exp
[−(a+|a|)(x1+ip3)

2

4
√

ar +|a| + −(b+|b|)(x2+ip4)
2

4
√

br +|b|
]
. However, this generalization works only for separable

two-dimensional systems and fails for other two-dimensional systems having interaction/cross
terms in the potential function. For such systems, one should select suitable ansatz for the
eigenfunction for obtaining eigenvalue spectra.

In view of these observations, in the present study, we considered four two-dimensional
complex potentials and found their corresponding eigenvalues and eigenfunctions. In case 4,
which is the PT-symmetric version of case 3, the imaginary part of the eigenvalue is zero, i.e.
Ei = 0 even in the presence of cross terms in the potential. This particular observation again
shows that for the existence of nonzero Ei , the potential should have some imaginary coupling
terms.
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